El conjunto [1,2,3,…,n] contiene un total de n! permutaciones únicas.
Al enumerar y etiquetar todas las permutaciones en orden,
Obtenemos la siguiente secuencia (es decir, para n = 3):
"123" "132" "213" "231" "312" "321"
Dados n y k, devuelve la k-ésima secuencia de permutación. (Nota: dado n estará entre 1 y 9 inclusive).
Solución Java 1
public class Solution { public String getPermutation(int n, int k) { // initialize all numbers ArrayList<Integer> numberList = new ArrayList<Integer>(); for (int i = 1; i <= n; i++) { numberList.add(i); } // change k to be index k--; // set factorial of n int mod = 1; for (int i = 1; i <= n; i++) { mod = mod * i; } String result = ""; // find sequence for (int i = 0; i < n; i++) { mod = mod / (n - i); // find the right number(curIndex) of int curIndex = k / mod; // update k k = k % mod; // get number according to curIndex result += numberList.get(curIndex); // remove from list numberList.remove(curIndex); } return result.toString(); } } |
Solución Java 2
public class Solution { public String getPermutation(int n, int k) { boolean[] output = new boolean[n]; StringBuilder buf = new StringBuilder(""); int[] res = new int[n]; res[0] = 1; for (int i = 1; i < n; i++) res[i] = res[i - 1] * i; for (int i = n - 1; i >= 0; i--) { int s = 1; while (k > res[i]) { s++; k = k - res[i]; } for (int j = 0; j < n; j++) { if (j + 1 <= s && output[j]) { s++; } } output[s - 1] = true; buf.append(Integer.toString(s)); } return buf.toString(); } } |